PRODUÇÃO DE PROTEÍNA UNICELULAR UTILIZANDO GLICEROL BRUTO: AVALIAÇÃO DOS EFEITOS DA COMPOSIÇÃO DO MEIO DE CULTIVO

Mariano Michelon; Elisane Odriosolla dos Santos; Susana Juliano Kalil; Carlos André Veiga Burkert

Introdução

O acréscimo da disponibilidade do glicerol, devido à introdução do biodiesel na matriz energética brasileira, torna importante a busca de alternativas tecnológicas para seu aproveitamento.

Este trabalho teve por objetivo avaliar os efeitos da composição do meio de cultivo e do pH inicial para obtenção de biomassa como fonte de proteína utilizando glicerol bruto proveniente da síntese do biodiesel como principal fonte de carbono.

Metodologia

Foi utilizada a levedura *Yarrowia lipolytica* YB-423. Os ensaios foram realizados utilizando glicerol bruto oriundo da síntese de biodiesel (78,4%), incubando-se em agitador rotatório a 30°C e 180 rpm durante 54 h.

Para avaliar os efeitos das variáveis foi realizado um planejamento experimental fracionário 2_v^{5-1} , conforme a Tabela 1, tendo-se como respostas a concentração de biomassa máxima e o conteúdo proteico.

A concentração de biomassa foi determinada segundo Choi e Park (2003). O conteúdo proteico foi determinado pelo método micro-Kjeldahl, de acordo com AOAC (2000) no término do cultivo.

Resultados e Discussão

A Tabela 1 apresenta a matriz do planejamento experimental fracionário 2_v^{5-1} e as respostas obtidas.

Verificou-se que o Ensaio 3 apresentou a maior concentração celular, produzindo 21,8 g/L de biomassa. Já o maior conteúdo proteico foi verificado no Ensaio 13 apresentando conteúdo proteico de 18,4%. No entanto, com o Ensaio 1 atingiu-se valores elevados de ambos, conteúdo proteico (18,2%) e biomassa (17,3 g/L).

Tabela 1. Matriz do planejamento experimental fracionário 2_v⁵⁻¹ com valores reais (entre parênteses) e codificados e respostas obtidas.

Ensaio	Glicerol (g/L)	рН	FA* (g/L)	EL** (g/L)	Peptona (g/L)	Biomassa (g/L)	Conteúdo Proteico (%m/m)
1	-1 (30)	-1 (4,5)	-1 (5,5)	-1 (0,5)	1 (1,5)	17,2	18,2
2	1 (60)	-1 (4,5)	-1 (5,5)	-1 (0,5)	-1 (0,5)	4,4	13,5
3	-1 (30)	1 (6,5)	-1 (5,5)	-1 (0,5)	-1 (0,5)	21,8	9,6
4	1 (60)	1 (6,5)	-1 (5,5)	-1 (0,5)	1 (1,5)	18,7	8,4
5	-1 (30)	-1 (4,5)	1 (12,5)	-1 (0,5)	-1 (0,5)	13,9	17,0
6	1 (60)	-1 (4,5)	1 (12,5)	-1 (0,5)	1 (1,5)	7,3	8,4
7	-1 (30)	1 (6,5)	1 (12,5)	-1 (0,5)	1 (1,5)	18,8	13,6
8	1 (60)	1 (6,5)	1 (12,5)	-1 (0,5)	-1 (0,5)	15,4	7,9
9	-1 (30)	-1 (4,5)	-1 (5,5)	1 (1,5)	-1 (0,5)	14,5	16,0
10	1 (60)	-1 (4,5)	-1 (5,5)	1 (1,5)	1 (1,5)	7,8	12,2
11	-1 (30)	1 (6,5)	-1 (5,5)	1 (1,5)	1 (1,5)	15,1	16,7
12	1 (60)	1 (6,5)	-1 (5,5)	1 (1,5)	-1 (0,5)	10,3	9,8
13	-1 (30)	-1 (4,5)	1 (12,5)	1 (1,5)	1 (1,5)	11,9	18,4
14	1 (60)	-1 (4,5)	1 (12,5)	1 (1,5)	-1 (0,5)	2,7	13,3
15	-1 (30)	1 (6,5)	1 (12,5)	1 (1,5)	-1 (0,5)	11,6	15,1
16	1 (60)	1 (6,5)	1 (12,5)	1 (1,5)	1 (1,5)	11,8	10,0
17	0 (45)	0 (5,5)	0 (9,0)	0 (1)	0 (1)	14,3	16,0
18	0 (45)	0 (5,5)	0 (9,0)	0 (1)	0 (1)	14,5	16,3
19	0 (45)	0 (5,5)	0 (9,0)	0 (1)	0 (1)	14,3	15,1

^{*} FA: Hidrogenofosfato de amônio;

A Figura 1 apresenta os efeitos das variáveis sobre a concentração de biomassa máxima e sobre o conteúdo proteico.

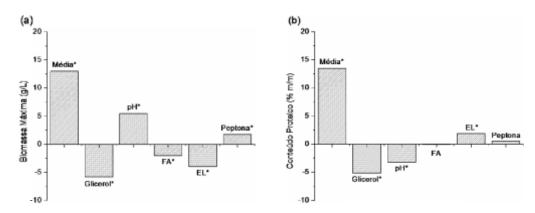


Figura 1. Efeitos das variáveis sobre (a) concentração de biomassa máxima e (b) conteúdo proteico (*p<0,05).

Conforme a Figura 1(a) todas as variáveis apresentaram efeito significativo sobre a concentração de biomassa. Verifica-se também, que na passagem do nível -1 para o nível +1 de glicerol, de hidrogenofosfato de amônio e de extrato de levedura ocorreu uma diminuição na concentração de biomassa máxima em 5,8, 2,0 e 4,0 g/L, respectivamente. A passagem do nível -1 para o nível +1 do pH inicial e da

^{**}EL: Extrato de levedura.

concentração de peptona resultou um efeito significativo de acréscimo na concentração de biomassa em 5,5 e 1,7 g/L, respectivamente.

De acordo com a Figura 1(b) verifica-se que a passagem do nível -1 para o nível +1 na concentração de glicerol apresentou um efeito significativo de decréscimo sobre o conteúdo proteico, diminuindo em média 5,1%. Observa-se que a passagem do nível -1 para o nível +1 do pH inicial e de extrato de levedura provocaram efeitos significativos contrários, de decréscimo de 3,2% e de acréscimo de 1,9% sobre o conteúdo proteico, respectivamente. A concentração de peptona e de hidrogenofosfato de amônio não apresentaram efeito significativo sobre esta resposta.

Conclusões

A levedura Yarrowia lipolytica YB-423 mostrou-se promissora na produção de biomassa como fonte de proteínas utilizando glicerol como principal fonte de carbono, sendo que as variáveis concentração de glicerol, pH inicial e concentração de extrato de levedura foram selecionadas para posterior otimização da composição do meio de cultivo, mantendo-se fixas as concentrações de hidrogenofosfato de amônio (5,5 g/L) e peptona (1,5 g/L).

Referências

A.O.A.C. - **Association of official analytical chemists**. Official of Analysis, 17th edition. CD-ROOM, 2000.

CHOI, M.H.; PARK, Y.H. Production of yeast biomass using waste Chinese cabbage. **Biomass & Bioenergy**, v. 25, p. 221-236, 2003.